Faculty of Eng. & Natural Sci.

IE312-202001
Operations Research II

Instructor(s)

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Office</th>
<th>Phone</th>
<th>Web</th>
<th>Office Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonguç Ünlüyurt</td>
<td><a href="mailto:tonguc@sabanciuniv.edu">tonguc@sabanciuniv.edu</a></td>
<td>FENS-1056</td>
<td>9504</td>
<td><a href="http://myweb.sabanciuniv.edu/tonguc/">http://myweb.sabanciuniv.edu/tonguc/</a></td>
<td>Monday 10:00-11:00 Wednesday 10:00-11:00</td>
</tr>
</tbody>
</table>

Course Content

Develop a broad perspective on the relationships between various types of optimization problems; acquire modeling and solution skills for various methodologies: integer programming, network flows, dynamic programming, heuristics; apply these skills to problems from domains such as service, production, transportation, and energy systems.

Objectives

To teach basic ingredients of deterministic optimization including integer programming modeling and solution methods, network models, dynamic programming and heuristics

Recommend or Required Reading

Textbook

Operations Research, Applications and Algorithms
Wayne L. Winston
Assessment Methods and Criteria

<table>
<thead>
<tr>
<th></th>
<th>Percentage(%)</th>
<th>Number of assessment methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Midterm</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>Exam</td>
<td>30</td>
<td>8</td>
</tr>
</tbody>
</table>

Course Outline

--Integer programming modeling.
--Branch and bound method.
--Introduction to networks.
--Shortest path, maximum flow and minimum cost network flow problems
--Characteristics of dynamic programming
--Dynamic programming examples
--Heuristic algorithms.
--Local search and metaheuristic algorithms.
--Overview and classification of optimization problems.

Learning Outcomes

Have a basic understanding of integer programming modeling and branch and bound algorithm as a solution method.

Have an understanding of basic concepts related to networks, network models including shortest path, maximum flow and minimum cost network flow problems
Have an understanding of dynamic programming
Have an understanding of heuristic approaches
Be able to implement developed models and/or solution methods using appropriate software

Course Policies

In the computer-based lectures, we will use Gurobi/Python to implement the models/algorithms.

There will be a midterm and a final. There will a single comprehensive make up exam for those of you who miss an exam.

There will be 8 quizzes during lecture hours or recitations. Best 6 will be counted towards your grade. There is no make up for the quizzes. The quiz dates will be announced beforehand.