ENS-309 Computer-Aided Engineering
Fall 2020

Instructor: Eralp Demir
Email: eralpd@sabanciuniv.edu
Class hours: Thursday 15:40-17:30
Friday 10:40-11:30
Zoom link: https://zoom.us/j/4653244758?pwd=SVZzdTFvUXFkZmFzNGZSRFkvRll1dz09
Meeting ID: 465 324 4758
Zoom Passcode: 6MepDb

Office Hours: After class, or by appointment

Main References:

Objectives: Course teaches how to perform engineering analysis using a computer software. Basics descriptions for analysis will be defined. A brief theoretical background will be provided at the beginning of each topic. Students will learn how to perform engineering analysis using a computer software. The design and analysis aspects will be discussed concerning the manufacturing constraints. All the concepts will be illustrated on worked examples.

Prerequisites:

- ENS-209 Computer-Aided Design
- IE-309 Manufacturing Processes-I (optional)

Learning Outcomes:

- Mathematical background for computer aided analysis
- Master a computer software for analysis simulations
- Mechanical analysis: static structural analysis, assembly analysis (joints, interference fits, etc.), analysis of machine elements, and vibration analysis
- Thermal analysis: problems involving conduction, convection, radiation, steady-state and transient heat flow problems
- Fluid analysis: fluid flow analysis, steady-state and time-dependent flows, thermofluid analysis (i.e. heat exchanger design)

Tentative Course Outline:

Week 1: Basics

Basic descriptions

- What is Finite Element Analysis?
- Finite Element Analysis used by Design Engineers
- Objectives of FEA for Design Engineers
- What is SOLIDWORKS® Simulation?
- Fundamental steps in an FEA project Errors in FEA
- A closer look at finite elements: mesh, elements, nodes, etc.
- What is calculated in FEA?
- How to interpret FEA results
- Units of measure
- Using online help
- Limitations of Static studies

Weeks 2-4: Mechanical - static structural

- Static equilibrium - force balance (Newton’s 2nd Law)
- Example applications: a hollow plate, L-bracket, link
- 2D problems

Weeks 5-7: Mechanical - joining elements

- Curved beam analysis
- Stress concentration analysis
- Thin and thick walled pressure vessels
- Contact analysis
- Interference fit analysis
- Bolted joint analysis
- Design optimization

Weeks 8-10: Vibration Analysis

- Dynamic equilibrium (Newton’s 2nd Law)
- Introduction to modal analysis
• Time response and frequency response of discrete systems
• Frequency response
• Vibration absorption

Week 10-12: Thermal analysis

• Energy balance equation
• Heat transfer by conduction, convection, radiation
• Steady-state and transient thermal analysis
• Examples: hollow plate, L-bracket, round bar, thermal analysis of a coffee mug

Week 12-14: Fluid analysis

• Continuity equation
• Introduction to fluid analysis using SOLIDWORKS® Flow Simulation
• Examples: Flat plate boundary layer, flow past a sphere and a cylinder, flow over a rotating cylinder, flow past an airfoil, pipe flow
• Thermofluid analysis: flow across a bank of cylinders, heat exchanger design

Week 14-15: Topology optimization

Use of topology optimization tool at introduction to design for 3D printing.

Computer Programming: SOLIDWORKS® Simulation, Flow Simulation (2019 or higher)

Grading Policy: Lab assignments (30%), Project (20%), Midterm (20%), Final (30%).

Important Dates:

Midterm **November 26th, 2020 @ 15:40-17:30**

Final Exam will be announced

Class Policy:

• Attendance to at least 70% of the online laboratory sessions is mandatory.