Lecturer : Hüseyin Özkan, FENS 1107, Phone: x9594. (hozkan@sabanciuniv.edu)

Teaching Assistants : Mehmet Yağan (Coordinating TA) (mehmetyagan@sabanciuniv.edu), Abdullah Kutay Cankı (akutay@sabanciuniv.edu), Ali Enver Bilecen (bilecen@sabanciuniv.edu), Osman Berke Gümay (osmanberke@sabanciuniv.edu).


Lecture Hours : Monday 11:40-13:30, Wednesday 11:40-12:30


Office Hours : Hüseyin Özkan: Wednesday 12:40-13:30
Mehmet Yağan: In recitations
Ali Enver Bilecen: In recitations
Abdullah Kutay Cankı: In recitations
Osman Berke Gümay: In recitations

Course Objectives : Major objectives of this course are 1) to provide a broad introduction to signals and systems which is one of the best starting points for the study of electrical engineering, computer science, and mechatronics, and 2) to introduce the use of mathematics as an appropriate language for thinking about engineering problems broadly and for describing and understanding signals and systems in particular.

Prerequisite : MATH 101

Grading Policy : Midterm 1 - 25%; Midterm 2 - 25%; Final - 35%; Take-home exams - 10%; Random attendance check in lectures and recitations - 5%
[Note that your attendance in lectures/recitations and your overall level of participation in the course will certainly have a consequence, particularly if your preliminary grade falls near a borderline.]

Midterm Dates : Midterm 1 — November 18, 19:30-22:00
Midterm 2 — December 21, 19:30-22:00
Final — Week 15, hh:mm-hh:mm
Recitations
Attendance and participation in recitations are necessary for you to do well in the course! Recitations are certainly critical to your mastering the material.

Exams (in class)
There will be two midterms and a final. All the exams will be closed-book, but you will be allowed to bring one page (double-sided) of notes for each exam. Notes must be in your own handwriting.

MATLAB
We will gradually introduce MATLAB as a tool for seeing/hearing/plotting some of the signals we will learn about in class as well as for performing various computations and transformations on signals. Recitations will provide the necessary tutorial and guidance on MATLAB when needed.

Take-home exams
There will be 5 or 6 take-home exams. All take-home exams will be submitted electronically through SUCourse. It is OK to have some moderate collaboration on the take-home exams with your classmates. However you must write your solutions independently, and all participants must be involved in all aspects of the joint work (hence you cannot just work on part of the take-home exam or part of a problem in the take-home exam and copy your friend’s solution for another part). In addition, at the top of your take-home exam paper, you must write the names of the individuals you have collaborated with, and specify which problems you have collaborated on. We also encourage discussion with the staff about the take-home exam problems during office hours. We will not accept any late submission (except for the most compelling reasons), because we believe that the habit of late submissions can make it difficult for the students to keep up with the course and cause them to fall behind. We will make solutions available soon after you submit your solutions. Please make sure to compare our solutions and yours soon after the solutions are available, and do not wait until the night before an exam!

Make-up Policy
There will only be one make-up exam at the end of the semester. Only health or other personal emergencies will be accepted as valid reasons to qualify you for a make-up exam.

SUCourse
We will use SUCourse to distribute take-home exams and their solutions, and as a communication medium between you and the staff. If you have any problems accessing the course material on SUCourse, please let us know as soon as possible so we can have such problems fixed.
Topics and (Rough) Weekly Schedule:

- Course Overview, Introduction (Chapter 1), Sinusoids, Complex Numbers (Chapter 2) [W1]
- Complex Exponentials, Phasors (Chapter 2), Spectrum Representation (Chapter 3) [W2 - W3]
- Fourier Series (Chapter 3) [W3 - W4]
- FIR Filters, LTI Systems, Convolution (Chapter 5) [W5 - W6]
- MIDTERM 1 [W7]
- Frequency Response of FIR Filters (Chapter 6) [W7 - W8]
- Continuous-time Signals and Systems, Impulse Response, Convolution (Chapter 9) [W8 - W9]
- Frequency Response of Continuous-time LTI Systems (Chapter 10) [W10 - W11]
- Continuous-time Fourier Transform (Chapter 11) [W11 - W12]
- MIDTERM 2 [W12]
- Filtering, Modulation, and Sampling (Chapter 12) [W13 - W14]
- FINAL EXAM