Faculty of Eng. & Natural Sci.
ENS511-202002
Engineering Optimization

Instructor(s)

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Office</th>
<th>Phone</th>
<th>Web</th>
<th>Office Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Özgür Erçetin</td>
<td>oercetin@sabanciuniv.edu</td>
<td>FENS-1111</td>
<td>9608</td>
<td>http://people.sabanciuniv.edu/~oercetin/</td>
<td></td>
</tr>
</tbody>
</table>

Course Content
This course will cover optimization methods for solving engineering problems. The methods will include linear and nonlinear programming, integer programming, dynamic programming, network models and an introduction to metaheuristic algorithms. Special emphasis will be given to practical aspects.

Objectives
This course will expose students to operations research modeling and basic tools for optimization. It is designed for engineering students who do not have an industrial engineering background but would like to learn about modeling and optimization concepts. This course will be particularly useful for those who are likely to use these methods in their research and projects.

Recommend or Required Reading

Textbook
Introduction to Operations Research, 9/e
Frederick S Hillier, Gerald J Lieberman

Readings
Rardin, Optimization in Operations Research, Pearson
Assessment Methods and Criteria

<table>
<thead>
<tr>
<th></th>
<th>Percentage(%)</th>
<th>Number of assessment methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>Assignment</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Participation</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Group Project</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Course Outline

Subjects covered will include:
1) Operations research and modeling.
2) Linear programming, simplex method, duality and sensitivity.
3) Nonlinear programming.
4) Network models.
5) Integer programming, discrete optimization models.
6) Dynamic programming.

Learning Outcomes

At the end of the course, the student is expected to have the ability to construct mathematical models of real life problems and to use appropriate methods/software to solve the constructed models.

Course Policies

There will be 6 (possibly 7 if time allows) homework assignments throughout the semester -- approximately one every two weeks. There will be a quiz in the week following the due date of each quiz. The topic of the quiz will be the same as the topic of the homework assigned in the previous week. The least quiz grade in the semester will be dropped. Quizzes will be administered online during lecture hour on Sucourse with the students' cameras turned on. The dates of the quizzes cannot be changed due to tight schedule.

It is essential for the students to develop their coding capabilities. Hence, there will be a single group project assignment where the students will either use Python (preferred since it will be more useful for you in the future) or Matlab to model and solve optimization
problems. The project will be assigned in the second half of the semester. No instruction will be given on how to code in Python or Matlab.

The students are expected to attend all classes, and they are expected to actively participate in the lectures by answering/asking questions. The final participation grade will be based on the instructor’s view of the students’ active participation, and not merely on the number of lectures the students have attended.