Faculty of Eng. & Natural Sci.
IE312-202002
Operations Research II

Instructor(s)

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Office</th>
<th>Phone</th>
<th>Web</th>
<th>Office Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonguç Ünlüyurt</td>
<td>tonguc@sabanciuniv.edu</td>
<td>FENS-1056</td>
<td>9504</td>
<td>http://myweb.sabanciuniv.edu/tonguc/</td>
<td>Tuesday 15:00-17:00</td>
</tr>
</tbody>
</table>

Course Content

Develop a broad perspective on the relationships between various types of optimization problems; acquire modeling and solution skills for various methodologies: integer programming, network flows, dynamic programming, heuristics; apply these skills to problems from domains such as service, production, transportation, and energy systems.

Objectives

To teach basic ingredients of deterministic optimization including integer programming modeling and solution methods, network models, dynamic programming and heuristics

Recommend or Required Reading

Textbook
Assessment Methods and Criteria

<table>
<thead>
<tr>
<th></th>
<th>Percentage(%)</th>
<th>Number of assessment methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Midterm</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Participation</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Course Outline

--Integer programming modeling.
--Branch and bound method.
--Introduction to networks.
--Shortest path, maximum flow and minimum cost network flow problems
--Characteristics of dynamic programming
--Dynamic programming examples
--Heuristic algorithms.
--Local search and metaheuristic algorithms.
--Overview and classification of optimization problems.

Learning Outcomes

Have a basic understanding of integer programming modeling and branch and bound algorithm as a solution method.

Have an understanding of basic concepts related to networks, network models including shortest path, maximum flow and minimum cost network flow problems
Have an understanding of dynamic programming
Have an understanding of heuristic approaches
Be able to implement developed models and/or solution methods using appropriate software
Course Policies

Zoom Links:

Tuesday Lecture: https://sabanciuniv.zoom.us/j/95831038754

Thursday Lecture: https://sabanciuniv.zoom.us/j/97474954188

Office Hours: https://sabanciuniv.zoom.us/j/94537867035

In the computer-based lectures, we will use Gurobi/Python to implement the models/algorithms.

There will be two midterms and a final. There will be a single comprehensive make-up exam for those of you who miss an exam.

There will be short quizzes in some lectures (max 5 minutes). The participation grade will be based on the attendance to and results of the quizzes.

For the midterm and final exams, your webcam should be on during the exam. In the case of non-compliance with this and other declared exam procedures, your exam will be void. Make sure to check that your webcam and microphone function properly before the exam.

You must attend the synchronous Zoom lectures, recitations, etc. and real-time online exams with your SU email account.