IE 402 - Integrated Manufacturing Systems
SPRING 2021

Instructor: L. Taner TUNÇ (ttunc@sabanciuniv.edu, Office: Online)
Mon: 16.40 – 17.30 Online Link: https://sabanciuniv.zoom.us/j/7933111536
Tue: 14.40 – 16.30 Online Link: https://sabanciuniv.zoom.us/j/7933111536

Labs and Teaching Assistants
Lab 01: Wed 10.40 – 12.30 – Online Link, TA: TBA
Lab 02: Tue 08.40 – 10.30 – Online Link, TA: TBA
Lab 03: Mon 12.40 – 14.30 – Online Link, TA: TBA
Lab 04: Thu 11.40 – 13.30 – Online Link, TA: TBA

Credits: 3

Objectives
Introduction to basic elements of integrated manufacturing systems. The students will gain theoretical and practical background on important aspects of integrated manufacturing systems, particularly on Computer-Aided Manufacturing (CAM), Computer Numerical Control (CNC) modelling of turning and milling processes, measurement, and process automation.

Course Description
Overview of Computer Integrated Manufacturing (CIM); overview of process engineering, computer aided manufacturing (CAM), process planning, fundamentals of CNC; CNC programming and applications, error sources in manufacturing, fundamentals of measurement and inspection systems; elements of automated manufacturing systems: sensors, actuators and computer interfacing, robots, monitoring and modelling of manufacturing processes and equipment and the concept of Industry 4.0.

References

Tentative Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Class</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Introduction to IE402</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Overview of Computer Integrated Manufacturing</td>
</tr>
<tr>
<td>2</td>
<td>3, 4</td>
<td>CNC Machines in the Manufacturing Context</td>
</tr>
<tr>
<td>3</td>
<td>5, 6</td>
<td>Elements of CNC Machine Tools</td>
</tr>
<tr>
<td>4</td>
<td>7, 8</td>
<td>Computer Aided Manufacturing (CAM)</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>Process Planning</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>APT Coding – Geometrical definitions</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>APT Coding - Motion commands</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>APT Examples and Applications</td>
</tr>
<tr>
<td>7</td>
<td>13, 14</td>
<td>MIDTERM - 1 (TBD)</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>G-Codes in Turning and Milling</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Advanced G-Codes in Turning Operations</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>Advanced G-Codes in Milling Operations</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Modelling of Machining – Orthogonal Cutting</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>Modelling of Machining – Oblique Cutting</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Mechanics of Turning Operations</td>
</tr>
</tbody>
</table>
Labs
1. Introduction to Labs
2. CAD (review + advanced modelling)
3. CAM (introduction and turning)
4. CAM (2 ½ axis milling)
5. CAM (3 axis milling)
6. CAM (advanced applications)
7. Part measurement and inspection
8. LabView (basics)
9. LabView (data acquisition and processing)
10. Process monitoring (force measurement)

Note:
You will lose points for each lab session you miss according to the following:

For the 1st lab session: 10 % of the overall Lab work points
For the 2nd lab session: 30 % of the overall Lab work points
For the 3rd lab session: 70 % of the overall Lab work points
For the 4th lab session: You fail the course!!!
No exceptions!

Tentative Grading (To be decided by you)

1. Final 30 %
2. Lab work 20 %
 (50% Project, 30% HW, 15% Pre/Post lab quiz, 15% TA's evaluation)
3. Lecture Attendance 10 %
4. Midterms 20 % (2 midterms)
5. Lab Final* (Conditional & Tentative) 0% → PASS/FAIL

*The instructor holds the right to conduct Lab Final exam for the whole class.

Manufacturing Project
Students are expected to complete a part manufacturing project in order to implement the theoretical knowledge gained during the lectures. The students will draw their own part geometry (subject to constraints), prepare the tool path, verify it with their teaching assistants and manufacture it using a CNC machine tool at the Manufacturing Research Lab. Students are expected to perform simulation study for representative processes of the project.

It will be 9 weeks long project and guidelines will be provided for the project. Every student is expected to attend the project implementation as announced. If the students do not follow the guidelines or do not attend either monitoring or manufacturing hours, their project will not count towards their grade.

1) Your average of Midterm Exams should be minimum 30% otherwise you will not be able to take the FINAL Exam.
2) You must complete the manufacturing project or you will directly fail the course (F)
3) Plagiarism will not be tolerated in any submission relevant to the course. Any attempt to plagiarism will result in an “F” grade.