COURSE DESCRIPTION

Thermodynamic and Phase Equilibria; One Component System Phase Diagrams; Two Component System Phase Diagrams: Binary eutectic, Intermediate compounds, Solid solution, Liquid immiscibility; Determination of Phase Diagrams: Experimental methods, Thermodynamic estimations and calculations; Ternary Systems: Method of determining composition, Isoplethal studies in ternary systems, Binary and ternary intermediate compounds, Solid solutions; Quaternary Systems.

COURSE AIM

The aim of the course is to provide a sound foundation in the basic facts and concepts of phase equilibria for materials engineers.

LEARNING OUTCOMES AND SUB-ACCOMPLISHMENT

1. The importance of phase diagrams in materials science and engineering will be able to be defined.

2. The main definitions and terms of phase diagram will be able to be explained.
 a) The terms of system, phase, equilibrium, components, degrees of freedom, and phase rule are defined.
 b) These terms are applied in materials science and engineering field.

3. In which conditions materials are stable will be interpreted in the unary systems by using pressure and temperature diagram.
 a) Pressure and temperature diagrams are defined in unary systems.
 b) The terms of phase diagrams are applied in the unary systems which are used in materials science and engineering field.
 c) These unary systems are compared and interpreted each others.

4. Binary systems will be able to be composed by using unary systems.
 a) Binary systems are designed by using unary systems.
 b) These systems are drawn and interpreted.

5. Problems will be able solved in binary systems by using composition and temperature diagram.
 a) Composition and temperature diagrams are defined in binary systems.
 b) The formations of congruently-incongruently melted intermediate compounds and solid solutions are defined in binary systems.
 c) Different reaction types are defined in binary systems.
 d) Calculations on cooling and heating are done in binary systems.
 e) Calculations of phase equilibrium diagram are done in binary systems.
 f) Composition and temperature diagrams are composed by using · G-T graphics.
g) The terms of phase diagrams are applied in the binary systems which are used in materials science and engineering field.
h) These binary systems are compared and interpreted each others.

6. Ternary systems will be able to be composed by using binary systems.
a) Ternary systems are designed by using binary systems
b) These systems are drawn and interpreted.

7. Problems will be able to be solved in ternary systems by using composition diagram.
a) Composition and temperature diagrams are defined in ternary systems.
b) The formations of congruently-incongruently melted intermediate compounds and solid solutions are defined in ternary systems.
c) Different reaction types are defined in ternary systems.
d) Isothermal sections are drawn in ternary systems.
e) Calculations on cooling and heating are done in ternary systems.
f) Calculations of phase equilibrium diagram are done in ternary systems.
g) Ternary systems are composed from binary systems.
h) The terms of phase diagrams are applied in the ternary systems which are used in materials science and engineering field.
i) These ternary systems are compared and interpreted each others.

8. Quaternary and six components systems will be introduced using composition diagrams.

COURSE OUTLINE

Week 1 Introduction: (February 23&25, 2021)
The importance of phase diagram on materials science and engineering
Examine the relationship between thermodynamics and phase diagrams
The main definitions and terms of phase diagrams:
a) System, b) Phase, c) Equilibrium, d) Component, e) Degrees of freedom, f) Phase rule

Week 2 Unary systems: (March 2&4, 2021)
a) Phase rule for uniary systems
b) Pressure-temperature diagrams in unary systems
c) Some, important unary systems used in materials science and engineering field

Week 3 Binary systems: (March 9&11, 2021)
a) Introduction to binary systems
b) Types of binary alloy systems – examples
c) Binary isomorphous systems
d) Lever rule and isoplethal studies

Week 4 Binary isomorphous systems: (March 16&18, 2021)
a) Heating-cooling calculations
b) Thermodynamic calculations - ΔG-X-T diagrams
c) Introduction to eutectic systems
Week 5 Binary eutectic systems: (March 23&25, 2021)

a) Phase calculations,
b) Heating/cooling curves / isoplethal studies
c) Equilibrium/non-equilibrium microstructures
d) Thermodynamic calculations - ΔG-X diagrams
e) Other eutectic-like systems

Week 6 Binary peritectic systems: (March 30 & April 1, 2021)

a) Phase calculations,
b) Isoplethal studies
c) Other peritectic-like systems
d) Recitation – preparation for the Midterm

Weeks 7: Hypothetical Binary System (April 6&8, 2021)

a) Questions/solutions about some binary phase diagrams
b) Hypothetical Binary System
c) Phase Analysis Diagrams

Weeks 8 Midterm exam (April, 13&15 2021)

a) Recitation – preparation for the Midterm
b) Midterm Exams (April 15, 2021)

Weeks 9 Ternary systems: (April 20&22, 2021)

a) Introduction to ternary systems
b) Space model of ternary system
c) Composing ternary systems by using binary systems
d) Determination of composition in ternary systems
e) Tie lines and Tie triangles in ternary phase diagram
f) Ternary isomorphous system

Week 10 Ternary systems: (April 27-29, 2021)

a) Isoplethal studies in ternary systems
b) Quantitive calculation on the ternary systems using lever rule
c) Alkemade lines and Alkemade theorem

Weeks 11 Ternary systems: (May 4&6, 2021)

a) Construction of isothermal sections
b) Construction of vertical sections (isopleth)
c) Exercises for Isoplethal Study
d) Ternary system with Solid Solution
e) Examples of the Ternary System

Week 12 Ternary systems: (May 11 2021)

a) Q/A sections for the previous sections
b) Discussion about formats for midterm project and exams
c) Introduction to Quaternary System
Week 13 Term projects: (May 18&20, 2021)
Deadline for submission of the midterm project
Oral presentations of midterm projects

Week 14 Final Exam: (May 25&27, 2020)

COURSE REQUIREMENTS
The students are required to attend to classes regularly, participate in discussions and also prepare themselves for the next lecture from their text book.

ASSESSMENT and EVALUATION
Midterm exam: 30%
Term Project: 30%
Final exam: 40%

SUGGESTED BOOKS

RECOMMENDED PREREQUISITE COURSES
ENS 202 Thermodynamics
ENS 205 Introduction to Materials Science

COURSE INSTRUCTOR
Asst. Res. Prof. Yılmaz Şimşek
SUNUM – room 1121 (ysimsek@sabanciuniv.edu)
Office Hours: can be set up by e-mail

Teaching Assistant: Shaghayegh Sacidiharzand (shaghayegh@sabanciuniv.edu)
Office hours: can be set up by e-mail