MAT 424: Materials Selection for Product Design

Instructor: Dr. Ozge Akbulut,

Course meeting times: Mon: 10:40–12:30 pm, Tue: 10:40–11:30 am. There are no recitations for this class, but you are encouraged to make use of the Instructor’s office hours for assistance.

Scope: The course focuses on materials selection for mechanical and everyday design of objects. It offers hands-on experience in product design through a class project that includes prototyping, testing of the prototype and iterations in the product. It aims to acquaint students with a systematic materials selection procedure for product design based on properties, cost, availability, and processability of materials for product design.

Learning outcomes:

1. To establish a quantitative and qualitative understanding between design parameters and materials properties
2. To optimize performance of materials for engineering applications
3. To comprehend the importance of sustainability and environment with respect to energy consumption and recyclability of engineering components in selection of materials and fabrication process
4. To implement a framework for assessing engineering failures (please see the note for Week 8)
5. To utilize available tools (e.g., computer programs) in materials selection

Grading:

Class project (40%)
Students will be given a predetermined problem that can be solved with a tool or a device or through an improvement of an available tool or device. They are expected to present at the stages of i) idea, ii) prototype, iii) testing of the prototype, and iv) final product.

Written assignments (20%)
Term exams (40%), no final.

Required reading:

Suggested reading:

Schedule

Week 1
Introduction to the concept of design-based doing
https://uxpodcast.com/125-don-norman-part-1/
Introduction to the class project
Product design for resource-limited settings
Week 2
Mechanical performance: stiffness, lightness etc. of beams and panels under tension and torsion, pressure vessel (common types of loading)
Performance index (materials index), Ashby Plot
Identification of design requirements
Molecular origins of density and stiffness
Individual project group meetings with the instructor, with appointment.

Week 3
Student presentations for the class project

Week 4
Thermal properties and performance

Week 5
Circular economy (Guest lecturer(s) from DCube—https://www.d-cube.org/ )
"Made to be remade"

Week 6
Materials for additive manufacturing
https://www.stratasys.com/materials/search

Week Exam 1

Week 7
Manufacturing processes
Design for manufacturing

Week 8
Multiple objective optimization

Week 9
Student presentations for the class project

Week 10
Materials for biomedical applications
Case studies and class discussions for biomedical design (Assignment 1, 10%)