ME301 Mechanical Systems I

Instructor Adnan Kefal (adnankefal@sabanciuniv.edu)
Teaching assistant Maryam Ghasemzadeh (mghasemzadeh@sabanciuniv.edu)
Course Attributes Sabanci University – 2020-21 Summer Semester
Undergraduate - 3 SU Credit / 10 ECTS/ 42 Teaching Hours
Course Schedule
Monday 09:40-11:30
Wednesday 08:40-10.30 & 11:40-13:30 (Recitation)
Friday 09:40-11.30 & 12.40-13:30
Lectures: https://sabanciuniv.zoom.us/j/3923709046
Recitations: https://sabanciuniv.zoom.us/j/4464333227
Prerequisites A passing grade in ENS 204 is required

Course Relevance and Objectives
This course introduces fundamental principles and methods of structural mechanics. Topics covered include stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, deflections with simple loadings, superposition techniques, thermal stresses, combined stresses, Mohr’s circle, combined loadings, buckling, energy methods, elastic stability, and approximate methods.
The course objective can be listed as to:
1. Introduce students to mechanics of materials and fundamentals of strength of materials,
2. Understand the sources and relationship between strain and stress and learn how to calculate them given various loading conditions
3. Apply computational techniques, such as Mohr’s circle, to solve mechanics problems
4. Learn how to conduct mechanical component design based on stress and deflection analysis
5. Calculate deflections of structural elements under basic loading.
6. Introduce students to the principles of design for static failure
7. Learn how to analyze a given solid mechanics problem in a simple and logical manner and using fundamental concepts to find its solution

Learning Outcomes
Students who passed the course satisfactorily can do the following tasks:
1. Calculation of external/internal forces and moments for modelling of structural members
2. Estimation of stresses due to axial force and simple shear
3. Classification of mechanical properties of materials
4. Calculation of deformation of members under axial force
5. Calculation of torsional stress and deformation
6. Prediction of stresses under pure bending
7. Calculation of transverse-shear stress and its exact distribution through the thickness
8. Prediction of stresses under combined loading and superposition of stresses
9. Transformations of stress and strain
10. Prediction of beams’ elastic curve
Course Syllabus

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 (01.07.21-09.07.21)</td>
<td>Introduction and Review of Statics Concepts of Stress and strain</td>
</tr>
<tr>
<td>Week 2 (12.07.21-16.07.21)</td>
<td>Mechanical properties of materials Axial Loading</td>
</tr>
<tr>
<td>Week 3 (26.07.21-30.07.21)</td>
<td>Torsion Pure Bending</td>
</tr>
<tr>
<td>Week 4 (02.08.21-06.08.21) (Midterm)</td>
<td>Transverse Shear Stress Combined Loading</td>
</tr>
<tr>
<td>Week 5 (09.08.21-13.08.21)</td>
<td>Transformation of Stress and Strain Failure Theories</td>
</tr>
<tr>
<td>Week 6 (16.08.21-20.08.21) (Final Exam)</td>
<td>Deflection of beams</td>
</tr>
</tbody>
</table>

Textbook

Assessment Criteria
- Midterm (30%), Homework (%30), Final Exam (40%)
 - *There will be 4 homework's given in the Weeks 2-3-4-5.*

Course Material
The outline of lecture notes, homeworks, and other course-related material will be posted at the SUCourse site (https://sucourse.sabanciuniv.edu/).