Faculty of Eng. & Natural Sci.
EE672-202102
System Identification

Instructor

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Office</th>
<th>Phone</th>
<th>Office Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mustafa Ünel</td>
<td>munel@sabanciuniv.edu</td>
<td>FENS-1066</td>
<td>9549</td>
<td>Before and after classes, or by appointment.</td>
</tr>
</tbody>
</table>

Course Content

Aims to provide the fundamental theory of identification of dynamical systems, i.e. how to use measured input-output data to build mathematical models, typically in terms of differential or difference equations. It covers: The mathematical foundations of System Identification, Nonparametric techniques, Parametrizations and model structures, Parameter estimation, Asymptotic statistical theory, User choices, Experimental design, Choice of model structure.

Objectives

Objective of the course is to provide graduate students with a strong background in linear and nonlinear system identification to build mathematical models from experimental data.

Recommend or Required Reading

Textbook

Readings

Course Outline

- Introduction
- Models of Dynamic Systems
- Data Generating Mechanism
- Simulation and Prediction
- Linear Model Structures
- Persistent Excitation
- Data Preprocessing
- Model Validation – Residual Analysis
- Subspace Identification
- Self Tuning Regulators
- Kalman Filter
- Nonlinear Model Structures

Learning Outcomes

- select inputs and outputs of a system, and characterize disturbances acting on the system
- design suitable excitation signals
- use measured input-output data to build mathematical models
- solve linear regression problems by least squares methods
- develop nonlinear NARX and Hammerstein-Wiener models
- preprocess data
- validate obtained models

Assessment Methods and Criteria

<table>
<thead>
<tr>
<th></th>
<th>Percentage (%)</th>
<th>Number of assessment methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>Assignment</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>Individual Project</td>
<td>35</td>
<td>1</td>
</tr>
</tbody>
</table>

Course Policies

- Make-up only for official excuses
- Cheating is absolutely subject to a disciplinary action and a null grade