ENS 204 - Mechanics  
Summer 2021-2022  
Syllabus

<table>
<thead>
<tr>
<th>Course</th>
<th>Instructor</th>
<th>E-mail:</th>
<th>Office:</th>
<th>Office Hour:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bekir Bediz</td>
<td><a href="mailto:bbediz@sabanciuniv.edu">bbediz@sabanciuniv.edu</a></td>
<td>FENS 2080</td>
<td>Tuesday 10:00-11:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Assistant</th>
<th>E-mail:</th>
<th>Office:</th>
<th>Office Hour:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazi Sher Ahmed</td>
<td><a href="mailto:kazisherahmed@sabanciuniv.edu">kazisherahmed@sabanciuniv.edu</a></td>
<td>FENS G064</td>
<td>TBA</td>
</tr>
<tr>
<td>Ata Alipour Ghassabi</td>
<td><a href="mailto:ata.alipour@sabanciuniv.edu">ata.alipour@sabanciuniv.edu</a></td>
<td>-</td>
<td>TBA</td>
</tr>
</tbody>
</table>

**Course Schedule**  
**Lecture:**  
Monday: 8:40 - 11:30 @ FENS L045  
Tuesday: 14:30 - 17:30 @ FENS L045  
**Recitation:**  
Wednesday: 11:40 - 13:30 @ FENS L045

**References**  
Students are recommended to follow the references occasionally:  

**Objectives:**  
At the end of the course student must demonstrate the ability to  
- use vector algebra in calculation of forces and moments.  
- apply equilibrium equations in the solution of 2- and 3-dimensional concurrent or non-concurrent force systems.  
- solve for unknown forces and moments using both the scalar and vector methods.  
- develop appropriate free-body diagrams and to use them in solution of statics problems.  
- formulate and solve the equilibrium equations for rigid bodies made up of multiple members.  
- calculate the geometric and mass properties of interest in solid mechanics.

**Prerequisites:**  
A passing grade in NS 101, MATH 101 and MATH 102

**Course Content (Tentative Schedule)**  
- General Principles (Week 1)  
  - Mechanics  
  - Fundamental concepts  
  - Units of measurement  
  - SI units  
  - Numerical calculations  
  - General procedure for analysis  

- Force Vectors (Week 2)  
  - Scalars and vectors  
  - Vector operations  
  - Vector addition of forces  
  - Addition of a system of coplanar forces  
  - Cartesian vectors  
  - Addition of cartesian vectors  
  - Position vectors
• Force vector directed along a line
• Dot product

• Equilibrium of a Particle (Week 3)
  • Condition for equilibrium of a particle
  • The free-body diagram
  • Co-planar force systems
  • Three-dimensional force systems

• Force System Resultants (Week 4-5)
  • Moment of a force - scalar formulation
  • Cross product
  • Moment of a force - vector formulation
  • Principle of moments
  • Moment of a force about a specified axis
  • Moment of a couple
  • Simplification of a force and couple system
  • Reduction of a simple distributed loading

• Equilibrium of a rigid body (Week 6)
  • Conditions for rigid-body equilibrium
  • Equations of equilibrium
  • Two- and three-force members
  • Constraints and statical determinacy

• Structural Analysis (Week 7-8)
  • Simple trusses
  • The method of joints
  • Zero-force members
  • The method of sections
  • Space trusses
  • Frames and machines

• Internal Forces (Week 9-10)
  • Internal forces developed in structural members
  • Shear and moment equations and diagrams
  • Relations between distributed load, shear, and moment
  • Cables

• Friction (Week 11-12)
  • Characteristics of dry friction
  • Problems involving dry friction
  • Wedges
  • Frictional forces on screws
  • Frictional forces on flat belts
  • Frictional forces on collar bearings, pivot bearings, and disks
  • Frictional forces on journal bearings
  • Rolling resistance

• Moments of inertia (Week 13-14)
  • Definition of moments of inertia for areas
  • Parallel-axis theorem for an area
  • Radius of gyration of an area
  • Moments of inertia for composite areas
  • Product of inertia for an area
  • Moments of inertia for an area about inclined axes
  • Mass moment of inertia
**Grading Policy**  Quiz (20%), Midterms (50%), Final Exam (30%)

- There will be around 10-20 pop-up quizzes (around 5-10 minutes) during the semester and 80% best of them will be included in your overall grade. They will be based on that day’s lecture notes.
- There will be 2 midterm exams (around 90 minutes) throughout the semester. They will be scheduled to be held during recitation hours or weekends.
- One make-up examination, covering the whole course material, will be given during the Finals Week for the students who miss any of the exams due to a valid excuse approved by the faculty/medical center. All examinations will be closed book and notes. The necessary formula will be provided to the students.
- All solutions must be written in a professional manner. You may lose points for poorly written answers.
- No extra exam/project/etc. will be given to increase your grade at the end of the semester.
- If your attendance is less than 50%, you will fail the course automatically.
- Students who miss any two exams will get N/A from the course.
- Oral exam (that will be recorded) will be given to students whose quiz/exam answers seem suspicious.

**Online Lecture Policy**

- Lectures will not be hybrid/online.
- The lecture slides will shared as pdf files. There will be empty sections in the shared files and students are expected to complete them during the class.
- Students cannot share or post to the Web any document (lecture slides, quiz/exam questions, etc.) with third parties.

**Disclaimer**

- Time conflict requests can be accepted; however, students who are registered to the course with time-conflict override accept the responsibility of any inconvenience that might occur due to missed content and/or quizzes. No make-up will be available for missed quizzes/content.
- This syllabus and course details might need to be updated throughout the semester because of the uncertainties the pandemic brings. Any modification will be announced at SUCourse+ and also during the class. Students are responsible from following the announcements.

**Academic Integrity**

Students are expected to be familiar with and comply with Sabanci University Academic Integrity Statement. Any form of academic dishonesty (plagiarism, copying/using other people’s work, attending classes/exams on behalf of other people, etc.) will be penalized with a failing grade for the related assignment, quiz, or exam and disciplinary actions will be taken.