Instructor: Baris Balcioglu
Office: FENS G001A
Phone: 0 216 483 99 65
E-mail: balcioglu@sabanciuniv.edu

Office Hours: by appointment

Lectures: Section A: Tuesday: 16.40-17.30 in FENS L045
Thurday: 12.40-14.30 in FMAN 1099

Recitations:
A Thursday 16.40-17.30 FENS L027 by Sina Shahri Majarshin (ssina@sabanciuniv.edu)
B Thursday 17.40-18.30 FENS L027 by Sina Shahri Majarshin (ssina@sabanciuniv.edu)
C Friday 14.40-15.30 FENS G032 by Melis Gürdağ (melisgurdag@sabanciuniv.edu)

Additional TA: Deniz Tuncer (dtuncer@sabanciuniv.edu)

Course Description: The mission of this course is to continue the study of modeling and solution of decision problems using operations research techniques with a particular emphasis on stochastic aspects.

Recommended Text Book Introduction to Stochastic Processes with R., Robert P. Dobrow, 1st Ed., Wiley. (Available as E Book at the IC)

Grading
Midterm 1 30% (Nov. 10, 2022 starting at 19.40)
Midterm 2 30% (Dec. 15, 2022 starting at 19.40)
Final Exam 40%

Important Rules:

1. You have to have a valid reason for not taking an exam. If a proof such as a medical report is not brought to me before or within the first three days of the exams you will NOT be given a make-up exam and will be assumed to score 0 in the exam you have missed. The make-up exams may need be scheduled after the final exam and it may be comprehensive.

2. Be respectful to your TA’s! The professor will deal with the objection hours.
Topics to be covered with tentative schedule:

1. Discrete time Markov chains (Weeks 1 to 7)
 a. Definitions, classification of the states, probability transition matrix
 b. Modeling, stationary case, the limiting distribution
 c. Absorbing Markov chains
2. Continuous time Markov chains (Week 8)
 a. Modeling,
 b. Stationary case, the limiting distribution
3. Poisson Process Weeks (9-10)
 a. Exponential distribution
 b. Counting processes,
4. Queueing models based on the birth-and-death process (Weeks 11-12)
 a. Introduction
 b. M/M/c queue and its variations
5. Modeling in Python (All weeks)

Computational Part

1. Install Anaconda (https://www.anaconda.com/products/individual-d). You can follow the guide uploaded to SU Course.