IE 501 - Linear Programming and Extensions
Fall 2022

Instructor

Ezgi Karabulut Türkseven
Office: FENS 1063
E-mail: ezgi.turkseven@sabanciuniv.edu
Office hours: TBA (in person and via Zoom)

Course Logistics

<table>
<thead>
<tr>
<th>Time - Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
</tr>
<tr>
<td>R 10:40 - 11:30 (FENS L056)</td>
</tr>
<tr>
<td>F 8:40 - 10:30 (FASS 1103)</td>
</tr>
</tbody>
</table>

Catalogue Description

Theory of linear programming; convexity; simplex and algorithmic aspects; duality and sensitivity; computational issues; decomposition and column generation; introduction to integer and nonlinear programming

Tentative Outline

1. Introduction to Linear Optimization
2. Background on Polyhedral Sets and their Geometry
3. Duality
4. The Simplex Method
5. Sensitivity Analysis
6. Decomposition Methods
7. Complexity of Linear Optimization and the Ellipsoid Method
8. Introduction to Interior Point Methods (if time permits)

Textbooks

Introduction to Linear Optimization, A. Nemirovski (Lecture Notes)
http://www.isye.gatech.edu/~nemirovs/

Recommended Readings:

Course Assessment Measures

- **Homework Assignments (45%)**: Approximately at the end of each chapter, the students will be given an extensive homework assignment to be completed within 1-2 weeks. These assignments are aimed for facilitating continuous learning. The students are allowed to work in groups, as long as each student submits their individual and unique copy, and clearly lists the names of their collaborators. A total of 5-8 homework assignments should be expected.

- **Exams (25% each)**: There will be two exams in total, each will cover the previous 6-8 weeks approximately. The format and the dates of the exam will be announced later. The tentative dates for Exam 1 are Nov 17 or Nov 24. Exam 2 will be held during the finals week.

- **Participation and Attendance (5%)**: Participation and in-class/online attendance to lectures or office hours will be evaluated.

The letter grades will be adjusted based on the performance of the class. Tentative cut-off points for the letter grades will be announced after the exams.

Software

The students will need to use a commercial solver to solve optimization problems. Although there are no restrictions on which programming language and solver to use, the students are encouraged to use Gurobi solver and Python programming language.

Academic Integrity

By taking this course, each student agrees to abide by the academic integrity policy at Sabanci University. Violators of academic integrity will be subject to disciplinary action.