ENS214 Dynamics Sabanci University 2023-24 (Spring)

Instructor	Adnan Kefal (<u>adnankefal@sabanciuniv.edu</u>)	
Teaching Asst.	Muhammed Yavuz Belur (<u>vavuz.belur@sabanciuniv.edu</u>)	
	Faraz Ganjdoust (<u>faraz@sabanciuniv.edu</u>)	
	Peiman Khandar Shahabad (<u>peiman@sabanciuniv.edu</u>)	
	Andisheh Choupani (<u>achoupani@sabanciuniv.edu</u>)	
Schedule	ENS 214	
	Monday 12:40 pm-2:30 pm FENS L045	
	Tuesday 11:40 am-12:30 pm FENS G035	
	▶ ENS 214R	
	Thursday 2:40 pm-4:30 pm FENS L056	
Credits	3 SU Credit / 6.00 ECTS / 42 Teaching Hours	
Prerequisite	ENS 204 - Mechanics	

Objectives

This course is designed for undergraduate students to (i) develop an understanding of particle and planar rigid body kinematics and kinetics (ii) obtain an understanding of Newton's Laws of Motion, and (iii) gain the ability to apply energy and momentum methods to particles and rigid bodies in planar motion.

Learning Outcomes

At the conclusion of this course, students should be able to:

- 1. Understand the basic kinematics concepts: displacement, velocity, and acceleration (and their angular counterparts)
- 2. Draw free-body diagram for a particle or a rigid body in motion
- 3. Understand the basic concepts of force, momentum, and energy
- 4. Understand and be able to apply Newton's laws of motion
- 5. Understand and be able to apply work-energy, impulse-momentum principle
- 6. Extend all of concepts of linear kinetics to systems in general plane motion

Course Content

Weeks & Lectures	Торіс
Week 1 – 19.02.2024 – 23.02.2024	KINEMATICS OF A PARTICLE
Week 2 – 26 02 2024 – 01 03 2024	Introduction, Rectilinear Kinematics, General
WCCR 2 20.02.2024 01.03.2024	Curvilinear Motion, Curvilinear Motion: Rectangular
	Components, Motion of a Projectile, Normal and
	Tangential, Component, Cylindrical Components,
	Absolute Dependent and Relative-Motion Motion
	Analysis of Two Particles.

Week 3 – 04.03.2024 – 08.03.2024	KINETICS OF A PARTICLE
(Quiz 1)	Force and Acceleration
Week 4 – 11.03.2024 – 15.03.2024	Newton's Second Law of Motion, The Equation of
Week 5 – 18.03.2024 – 22.03.2024	Motion, Rectangular Coordinates, Normal and
	langential Coordinates, Cylindrical Coordinates,
	Central-Force Motion and Space Mechanics
	Work and Energy
	Work of a Force, Principle of Work and Energy, Power
	and Efficiency, Conservative Forces and Potential
	Energy, Conservation of Energy
	Impulse and Momentum
	Principle of Linear Impulse and Momentum,
	Conservation of Linear Momentum for a System of
	Particles, Impact, Angular Momentum, Principle of
	Angular Impulse and Momentum
Week 6 – 25.03.2024 – 29.03.2024	PLANAR KINEMATICS OF A RIGID BODY
	Planar Rigid-Body Motion, Translation, Rotation about a
Week 7 – 01.04.2024 – 05.04.2024	Fixed Axis, Absolute and Relative Motion Analysis:
(Midterm 1)	Velocity, Instantaneous Center of Zero Velocity,
Week 8 – 15.04.2024 – 19.04.2024	Acceleration, Relative-Motion Analysis using Rotating
	Axes
Week 9 – 22.04.2024 – 26.04.2024	PLANAR KINETICS OF A RIGID BODY
Week 10 – 29.04.2024 – 03.05.2024	Force and Acceleration
(Quiz 3)	Mass Moment of Inertia, Planar Kinetic Equations of
Week 11 – 06 05 2024 – 10 05 2024	Notion, Equations of Motion: Translation, Rotation
Week 11 00.03.2024 10.03.2024	about a Fixed Axis and General Plane Motion
	Work and Energy Kingtig Energy The Work of a Force. The Work of a
	Couple Memort, Dringiple of Work and Energy
	Conservation of Energy,
	Conservation of Energy
	Impulse and Momentum Drinciple of Impulse
	Linear and Angular Momentum, Principle of Impulse
Week 12 12 05 2024 17 05 2024	
week $12 - 13.05.2024 - 17.05.2024$	Detation About a Fixed Daint. The Time Derivative of a
(Quiz 4)	Rotation About a Fixed Point, The Time Derivative of a
$(N_{i} + 20.05.2024 - 24.05.2024)$	Petating System Constal Mation Polative Mation
(Wildterm 2)	Analysis Using Translating and Detating Avec
N/	
vveeк 14 – 27.05.2024 – 31.05.2024	I HKEE-DIIVIENSIONAL KINETICS OF A RIGID BODY
	Kingtig Energy Equations of Mation Correspondentum,
	Ninetic Energy, Equations of Wotion, Gyroscopic
	wouldn, forque-Free wotion

Main Textbook:

1. Hibbeler, R.C., 2013. Engineering mechanics: dynamics. Pearson Education.

Other References:

- 1. Meriam, J.L., Kraige, L.G. and Bolton, J.N., 2020. Engineering mechanics: dynamics. John Wiley & Sons.
- 2. Edition, E., Beer, F.P., Johnston Jr, E.R., Cornwell, P.J. and Self, B.P., 2020. Vector Mechanics for Engineers: Dynamics. New York: McGraw-Hill.

Assessment Criteria

Quizzes (4×5%), Midterms (2×20%), Final (40%)

• Quizzes will be conducted during recitation sessions.

Course Material

The outline of lecture notes, project guidelines, and other course-related material will be posted at the SUCourse site (<u>https://sucourse.sabanciuniv.edu/</u>).