

Course	CHEM 405 / Electrochemistry
Instructor	Selmiye Alkan Gürsel
Term	2020-2021 Spring
Hours of classroom	Monday 11.40-13.30
	Friday 14.40-15.30

Instructor's Contact Information

Office Phone	02164839573
Office Location	FENS 2045
E-mail address	selmiye@sabanciuniv.edu
Office hours	Monday 15.40-16.30 (but please email me!)

Teaching Assistant

Bilal Iskandarani	bilal@sabanciuniv.edu
-------------------	-----------------------

General Course Information

Course	This course is designed to be a comprehensive introduction to fundamentals of	
Description	electrochemistry, modern electrochemical methods and applications of	
•	electrochemistry.	
Objectives	• To provide a foundation in theoretical electrochemistry which is sufficient for	
	the understanding of many basic phenomena.	
	• To teach the theory behind a number of advanced electrochemical methods.	
	• To familiarize the student with those electrochemical methods that are	
	exploited in many electroanalytical and technologically important applications such as batteries and fuel cells.	
Reference	There will be no textbook for this course. You can study from lecture notes and	
Books	reference books on <i>Electrochemistry</i> . Several examples are given below:	
	• Rieger, Electrochemistry , 2nd edition. (Chapman &Hall, 1994).	
	Bard and Faulkner, Electrochemical techniques: fundamentals	
	& applications, 2nd edition, (Wiley, 2001)	
	• Sawyer, Sobkowiak and Roberts, Electrochemistry for chemists , (Wiley,1995)	
	Bockris, and Reddy, Modern electrochemistry, (Plenum, 1998)	
Top Hat	In lectures, we will use an online response system called TopHat accessible from	
	tophat.com on your web browser, or through free Top Hat app	
(online	(tophat.com/mobile-apps) if using tablet. If you have not used the system before,	
response	please review this "Getting Started" guide before the first lecture. You must log in	
system)	Top Hat with your SU email account name and bring a device connected to	
	SABANCIUNIV WiFi to each lecture.	

Grading	Top Hat activities– 20 %	
	Homework – 20 %	
	Project – 30 %	
	Final exam – 30 %	

Tentative Course Schedule

Date	Topic
February 22 & 26	Introduction
March 1 & 5	Part I: Fundamentals of Electrochemistry
	A) Terminology, History, Electrode-Electrolyte Interface, Electrochemical Cells,
	Standard Half Cell Potentials, Electrochemical Series
March 8 & 12	Part I: Fundamentals of Electrochemistry
	A) Terminology, History, Electrode-Electrolyte Interface, Electrochemical Cells,
	Standard Half Cell Potentials, Electrochemical Series
March 15 & 19	Part I: Fundamentals of Electrochemistry
	B) Electrodes, Electrode Reactions, Electrode Kinetics,
	Motion of Particles in Solution, Electrical Conductivity
March 22 & 26	Part I: Fundamentals of Electrochemistry
	C) Thermodynamics of Electrochemistry, Electrolysis, Faraday's Law, Nernst Equation
March 29 & April 2	Part II: Basic Techniques in Electrochemistry
	A) Electrochemical Measurement, Potentiostatic & Galvanostatic Methods
April 5 & 9	Part II: Basic Techniques in Electrochemistry
	B) Voltammetry, Polarography, Cyclic Voltammetry
April 12 & 16	Part II: Basic Techniques in Electrochemistry
	C) Electrochemical Impedance Spectroscopy
April 19	Part II: Basic Techniques in Electrochemistry
	C) Electrochemical Impedance Spectroscopy
April 26 & 30	Part III: Applications of Electrochemistry A) Fuel Cells
May 3 & 7	Part III: Applications of Electrochemistry B) Batteries
May 10	Project Presentations
May 17 & 21	Project Presentations
May 24 & 28	Project Presentations