CS 407(CS 503) Theory of Computation - Spring 2021

Main Text : H. R. Lewis\& C. H. Papadmitriou, Elements of Theory of Computation, 2nd ed. Prentice Hall 1998 (out-of-print; e-copy available) AuxiliaryTexts :

	NAME/SCHEDULE	EMAIL/TEL	OFFICE HOUR
INSTRUCTOR	Kemal İNAN	inan	by appointment
ASSISTANT(S)	Çağrı Uluç Yildırımoğlu	cagriuluc	Tи 16:40-17:30 (or by appointment)
LECTURES	Tu 11:40-13:30 Th 13:40-14:30		
RECITATION	Tи 17:40-18:30		

(1)M. Sipser, Introduction to the Theory of Computation, 3rd ed., Cengage Learning 2003 (2) M. A. Garey\& D. S. Johnson, Computers and Intractability, Bell Telephone Labs 1979

Grading: 20\% midterm, 10\% HWs, 35\% quizzes, 35\% Final A total of $\mathbf{1 0}$ quizzes each of $\mathbf{2 0}$ minutes duration will be given during chosen class lectures ; minimum 7 quiz entries are required for a passing grade irrespective of health or similar legitimate-looking excuses.

Tentative Spring 2021 Schedule

Feb., March	$\begin{gathered} 23 \\ 1 \end{gathered}$	$\begin{aligned} & 25 \\ & 1,2 \end{aligned}$	$\begin{gathered} \hline 2 \\ 2,3 \\ H W \mathbf{W} \end{gathered}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{gathered} 9 \\ \mathbf{3} \\ \boldsymbol{H W} \mathbf{2} \end{gathered}$	11 4	$\begin{aligned} & \hline 16 \\ & 4,5 \end{aligned}$	18 5
March, April	$\begin{gathered} 23 \\ 5,6 \\ H W 3 \end{gathered}$	$\begin{gathered} 25 \\ 6 \end{gathered}$	$\begin{aligned} & \hline 30 \\ & \mathbf{6 , 7} \end{aligned}$	$\begin{aligned} & 1 \\ & 7 \end{aligned}$	$\begin{gathered} 6 \\ 8 \\ \boldsymbol{B W} 4 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{gathered} 13 \\ 9 \\ H W 5 \end{gathered}$	$\begin{gathered} 15 \\ 9 \end{gathered}$
April,May	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 22 \\ & 11 \end{aligned}$	$\begin{gathered} 27 \\ 11,12 \\ \mathbf{H W 6} \end{gathered}$	29 Midterm	$\begin{gathered} 4 \\ 13,14 \end{gathered}$	$\begin{gathered} 6 \\ 14 \end{gathered}$	$\begin{gathered} 11 \\ 15 \\ H W 7 \end{gathered}$	$\begin{gathered} 13 \\ \text { Holiday } \end{gathered}$
May, June	$\begin{aligned} & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{gathered} 25 \\ \mathbf{1 6} \\ \boldsymbol{H W 8} \end{gathered}$	$\begin{aligned} & 27 \\ & 16 \end{aligned}$	Final			

TENTATIVE COURSE OUTLINE

1- Turing Machines: Definition, Representations and Computational Concepts (Main Text 4.1- 4.2)

2 - Extended Turing Machines : Multitape, RAM Machine and Equivalences (MT 4.3-4.4)

3 - Nondeterministic TM (MT 4.5)
4 - Grammars and Computation (MT 4.6)
5 - Numerical functions : primitive recursion and $\boldsymbol{\mu}$ - recursion (MT 4.7)
6 - Computational equivalence of grammars, TMs and recursive functions (MT 4.7)
7- Up-down counter and Universal Turing Machines (MT Prob. 5.4.5, 5.2)
8- Decidability: Church Turing thesis and the Halting Problem (MT 5.3)
9 - Reducability and Unsolvable Problems (MT 5.4-5.7)
10 - Recursion (Sipser, Chapter 6, pp. 197-203)
11 - Computational Complexity: Concepts and Definitions
(MT 6.1-6.3 \&Garey and Johnson 3.1)
12 - The Class P and NP (MT 6.4)
13 - Polynomial Reductions and NP-Completeness (MT 7.1)
14 - Cook's Theorem (MT 7.2 \&Garey 2.6)
15 - Some NP- Complete Problems (MT 7. \&Garey 3.1)
16 - Space Complexity (Sipser, Chapter 8 selections)

