IE 311: Operations Research I

Spring 2021

Instructor Esra Koca (esra.koca@sabanciuniv.edu)
Lecture A: Tuesday 09:40-10:30, Thursday 14:40-16:30

Hours B: Tuesday 08:40-09:30, Thursday 08:40-10:30

Office Hours Tuesday 11:00-11:30
(Instructor) Thursday 11:00-11:30

Recitation	A: Thursday 16:40-17:30
Hours	B: Friday 09:40-10:30
	C: Friday 10:40-11:30
	D: Friday 12:40-13:30
	E: Friday 14:40-15:30
	F: Friday 17:40-18:30
Office Hours	Thursday 17:40-18:30
(TAs)	Friday 08:40-09:30
	Friday 11:40-12:30
	Friday 13:40-14:30
	Friday 15:40-16:30
	Friday 16:40-17:30
Graduate	Deniz Tuncer (dtuncer@sabanciuniv.edu)
Teaching	Ibrahim Enes Yavas (iyavas@sabanciuniv.edu)
Assistants	Ismail Gokay Dogan (igokay@sabanciuniv.edu)
	Mosayeb Jalilian (mosayeb.jalilian@sabanciuniv.edu)
	Nozir Shokirov (shokirovnozir@sabanciuniv.edu)
	Yasaman Karimian Hadi Ardebili (yasaman@sabanciuniv.edu)
Undergrad.	Goksu Ozcan (goksuozcan@sabanciuniv.edu)
Teaching	Irmak Ecem Eris (irmakeris@sabanciuniv.edu)
Assistants	Murat Dalyanci (muratdalyanci@sabanciuniv.edu)

Catalog Linear and integer programming formulations; convex analysis; algorithmic design
Description and the simplex method; duality and sensitivity; computer implementations.

Objective The objective of this course is to study the modeling and solution of decision problems with deterministic parameters using operations research techniques with a particular emphasis on solution algorithms and implementation.

Course This course will cover the following main topics:

Textbook Operations Research: Applications and Algorithms, 4th edition. W.L. Winston. Thomson/Brooks/Cole, 2004.

Homer Books Link

Reference Introduction to Operations Research, 9th edition. F.S. Hillier, G.J. Lieberman. Books McGraw-Hill, 2010. Operations Research: An Introduction, 7th edition. H.A. Taha. Prentice-Hall, 2003.

Lecture All lectures will be live and delivered via Zoom. Students are required to attend at Style least $\mathbf{7 0 \%}$ of the lectures.
On Tuesdays, we will have a single hour of theoretical lectures (unless otherwise stated).
On Thursdays, we will have one hour of theoretical lectures. In the second lecture hours, there will be a quiz, then we will have computer-based lectures (unless otherwise stated).
Each computer-based lecture will involve some implementation assignments. Although they will not be graded, students are required to submit their work through Sucourse at the end of the lecture.

Recitation On Tuesdays, recitation questions and short videos will be posted.
Style

On Thursdays and Fridays, the TAs will hold online office hours during the recitation hours. The students must have already worked on the recitation questions posted on Tuesday and come prepared to these sessions.

Grading Quizzes (25\%)

Midterm 1 (22.5\%) March 27th at 14:00-16:30
Midterm 2 (22.5\%) April 24th at 10:00-12:30
Final (30\%)
A student is required to attend

- at least 70% of the lectures, and
- at least 70% of the quizzes, and
- at least one of the midterm exams, and
- the final exam.

Quizzes Students should be prepared to have a quiz every Thursday. The content will primarily be based on the lecture and recitation from the previous week.

There are will be 10 quizzes in total. Quizzes will be distributed via Sucourse, and recorded via Zoom online meeting platform.

Exams There will be two midterm exams and a final. Each exam will have a computerbased component. A comprehensive make-up exam will be given for students missing any of these exams due to a medical excuse at the end of the semester. Exam questions will be distributed one-by-one via Sucourse, and recorded via Zoom online meeting platform.

Tentative exam topics are as follows:

- Midterm 1
- Lecture 2a: Modeling Linear Programs
- Lecture 2b: Modeling Integer Programs
- Midterm 2
- Lecture 3a: Preliminaries for LPs
- Lecture 3b: Simplex Method for Structured LPs
- Lecture 3c: Simplex Method for Unstructured LPs
- Final
- Lecture 2: Modeling Linear and Integer Programs
- Lecture 3d: Duality
- Lecture 3e: Dual Simplex and Revised Simplex Methods
- Lecture 3f: Sensitivity and Post-Optimality Analysis

Assessment Policy

Tentative

 Weekly ScheduleSoftware: Students will need to model, implement and solve linear and integer programs in lectures, recitations and homework questions. We will use Gurobi solver with Python interface.
A step-by-step installation tutorial is already uploaded to Sucourse.

