IE 416/516: Additive Manufacturing Spring 2021

Class Time and Location: Tuesdays, 9:40-12:30 at Zoom

Zoom Meeting:

https://sabanciuniv.zoom.us/j/99725980108?pwd=RXZVWEhOaEdwZUhqajdnOEx1UV

B4UT09

Meeting ID: 997 2598 0108

Passcode: 511900

Lab: Tuesdays, 17:40-18:30 and Wednesdays, 16:40-17:30

Zoom Meeting for Lab Sessions:

https://sabanciuniv.zoom.us/j/3227236679?pwd=ZytORVQ2Ti9wQ0FVMHZUQWNoY

VBBZz09

TA: Anıl Ahmet Acar – aacar@sabanciuniv.edu

Instructor: Prof. Bahattin Koc **Office:** SU-IMC

Telephone: x1301

E-Mail: bahattin.koc@sabanciuniv.edu

Office hours: by e-mail

Pre-requisite: ENS 209 or Computer Aided Design (CAD) knowledge or permission of

instructor

Objective of the course: Learn the fundamentals of Additive Manufacturing processes, their materials, design, path planning and applications of various Additive Manufacturing processes.

Outcomes: At the conclusion of this course, you will be able to:

- Learn various Additive Manufacturing (AM) processes
- Understand the fundamental physical fundamentals of AM processes
- Analyze and optimize Computer-Aided Design (CAD) for AM
- Develop and implement algorithms to generate path plans for AM
- Decide on materials for AM
- Identify capabilities, constrains and limitations of AM processes to decide on best process for a given application

Description:

This course will introduce advanced design and fabrication methodologies in Additive Manufacturing. The Additive Manufacturing is defined as the process of adding materials layer-by-layer to manufacture parts from three-dimensional (3D) computer models.

Additive Manufacturing also called Layered Manufacturing, 3D Printing or Solid Freeform Fabrication is considered one of the next-manufacturing revolutions. The topics covered include various additive manufacturing processes and their process principles, the materials used, computer-aided design and path planning for additive manufacturing processes, process-related limitations and constraints and applications of Additive Manufacturing. The course also includes several related hands-on projects.

Grade Distribution for the course is as follows:

	<u>IE 416</u>	MFG 516
Assignments	20%	10%
Projects	40%	35%
Review Paper		15%
Final Exam	40%	40%
T 1	100.0/	1000/
Total	100 %	100%

References:

- Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing by Ian Gibson, David W. Rosen, Brent Stucker
- Fabricated: The New World of 3D Printing by Hod Lipson, Melba Kurman
- Computer Aided Manufacturing, by T.C. Chang, R.A. Wysk, and H.P. Wang 3rd Edition, Prentice Hall, 2006.
- Product Design: Techniques in Reverse Engineering and New Product Development by K. Otto and K. Wood, Prentice Hall, 2001.
- Principles of CAD/CAM/CAE, by K. Lee, Addison-Wesley, 1999.

Topics:

- 1. Introduction Additive Manufacturing
- 2. Computer-aided design for AM
- 3. Reverse engineering
- 4. Path Planning and optimization AM
- 5. Different AM processes and physical fundamentals
- 6. Photopolymerization
- 7. Powder Processes
- 8. Extrusion
- 9. Hybrid
- 10. Materials for AM processes
- 11. Applications of AM
- 12. Tooling
- 13. Advanced AM Processes