ME-302 Mechanical Systems II

SPRING 2021

Instructor: Eralp Demir		
E-mail: eralpd@sabanciuniv.edu		
Class hours: Tuesday 5:40-17:30		
Zoom ID:		
$465 \ 324 \ 4758$		
TAs:		
Ali Rashed (rashed)	Thursday $(16:40-17:30)$	ME302-L-A
Can Bayraktar (canbayraktar)	Friday $(10:40-12:30)$	ME302-L-B
Celal Umut Kenanoglu (umut.kenanoglu)	Thursday $(12:40-14:30)$	ME302-R-A
Fiyinfoluwa Abioye (fabioye)	Thursday $(14:40-16:30)$	ME302-R-B

Office Hours: After class, or by appointment

Main References:

• Richard G. Budynas and J. Keith Nisbett, *Shigley's Mechanical Engineering Design*, McGraw Hill, 2011.

Objectives: This course intends to give design and engineering principles of machine elements for undergraduate students.

Prerequisites: ME-301

Tentative Course Outline:

Week-1: Basics of Machine Design Introduction Materials Stress Analysis Deflection and Stiffness Week-2: Failure Analysis Static Strength and Failure **Fatigue Failure** Week-3/12: Design of Mechanical Elements Design principles related with the machine elements Week-3: Design of Shafts Week-4: Design of screws, fasteners, non-permanent joints Week-7: Design of welds, bonds, and permanent joints Week-8: Mechanical springs Week-9: Rolling contact bearings Week-10: Gears Week-11: Flexible Machine Elements Week-12: Power Transmission Week-13: Finite Element Method Generalized FEA for static linear elasticity; Basic Finite Element Principles; Stress Analysis using a commercial software (Solidworks).

Learning Outcomes:

- Ability to perform design of machine elements
- Decision making for selection of machine elements
- Strength and Failure analysis considering static and fatigue load conditions
- Ability to solve basic engineering problems with the use of a commercially available software

Computer Programming: MATLAB, ANSYS

Grading Policy: Assignments(30%), Project (20%), Midterm (20%), Final (30%).

Important Dates:

will be announced

Class Policy:

- Regular attendance is essential and expected.
- Quizzes will be done during lab or recitation hours.