SABANCI UNIVERSITY

Faculty of Engineering & Natural Sciences

ENS203 – Electronic Circuits I

Summer 2020/2021 Syllabus

Instructor Teaching Assistant

Ömer Ceylan Abdurrahman Burak

omer.ceylan@sabanciuniv.edu abdurrahman.burak@sabanciuniv.edu

Office Hours: Thursday 14:40-15:30 Office Hours: Wednesday 14:40-15:30

Zoom Link: https://sabanciuniv.zoom.us/j/9757380583

Zoom Meeting ID: 975 738 0583

Class Schedule

Textbook: Allan R. Hambley. Electrical Engineering: Principles & Applications.

Course Content: Basic Circuit Analysis using Kirchhoff's voltage and current (KVL & KCL) laws, Thevenin and Norton Equivalent Circuits, Passive components, First-order RL and RC circuits, Second-order RLC circuits, Phasors, Frequency response, Bode plot, Series and parallel resonance, operational amplifiers and their applications, active filters, diodes, wave shaping circuits.

Learning Outcomes:

- To apply basic principles of circuit design through KVL and KCL circuit laws to any circuits problem.
- To apply node voltage and/or mesh current analysis methods to analyze circuits.
- To learn the concepts of Thevenin and Norton Equivalent Circuits and apply these to simplify complex circuits.
- To be familiar with first order differential equations and solving first order circuits such as RC and RL circuits.
- Understand sinusoidal steady state analysis, phasors and apply these concepts to analyze first and second-order circuits.
- To learn the concepts of frequency response and bode plot, and apply these concepts to sinosoidal circuits
- To learn the concept of amplification, be able to design operational amplifier based circuits.
- To learn the concept of diodes and apply this knowledge to design wave shaping circuits.

Tentavive Course Schedule:

Date	Subjects	
July 1, Thursday	Introduction	
July 1, Thursday	Current, Voltage, Reference Polarities, Power, Energy, KCL	
July 6, Tuesday	KVL, Circuit Elements (Short circuit, open circuit, source types)	
July 6, Tuesday	Series / Parallel Resistive Circuits, Voltage and Current Dividers	
July 7, Wednesday	Node Voltage Analysis	
July 7, Wednesday	Node Voltage Analysis	
July 7, Wednesday	Mesh-Current Analysis	
July 8, Thursday	Thevenin and Norton Equivalent Circuits	
July 8, Thursday	Thevenin and Norton Equivalent Circuits, Source Transformation, Maximum Power Transfer	
July 13, Tuesday	Superposition, Wheatstone Bridge	
July 13, Tuesday	Capacitors, Inductors	

July 14, Wednesday	First-Order RC Circuits		
July 14, Wednesday	DC Steady State, RL Circuits		
July 14, Wednesday	RC and RL Circuits With General Sources		
July 27, Tuesday	Midterm 1	In lecture	•
July 27, Tuesday	Midterm 1	In lecture	9
July 28, Wednesday	Second-Order Circuits (RLC Circuits)		
July 28, Wednesday	Series RLC		
July 28, Wednesday	Parallel RLC		
July 29, Thursday	Sinosoidal Currents and Voltages		
July 29, Thursday	Phasors, Complex Impedances		
August 3, Tuesday	Circuit Analysis with Phasors		
August 3, Tuesday	Circuit Analysis with Phasors		
August 4, Wednesday	Power in AC Circuits		
August 4, Wednesday	Thevenin and Norton Using Phasors		
August 4, Wednesday	Frequency Response, Transfer Function		
August 5, Thursday	Bode Plot		
August 5, Thursday	Bode Plot		
August 10, Tuesday	First-Order Low Pass Filters		
August 10, Tuesday	First-Order High Pass Filters		
August 11, Wednesday	Series Resonance		
August 11, Wednesday	Parallel Resonance		
August 11, Wednesday	Second-Order Filters		
August 12, Thursday	Amplifiers		
August 12, Thursday	Operational Amplifiers		
August 14, Saturday	Midterm 2	Starts 14:00	In the weekend
August 14, Saturday	Midterm 2	Ends 16:00	In the weekend
August 17, Tuesday	Inverting and Non-inverting Opamps		

August 17, Tuesday	Inverting and Non-inverting Opamps	
August 18, Wednesday	Instrumentation Amplifier, Integrator, Differentiator	
August 18, Wednesday	Active Filters	
August 18, Wednesday	Diodes	
August 19, Thursday	Wave Shaping Circuits	
August 19, Thursday	Wave Shaping Circuits	

Course Policies:

- Attendance is extremely important. Attendance will be graded through Zoom participation reports. Missing each 3 days of lectures will result in 1% reduction out of 100 in your final total grade.
- Cheating will not be tolerated.
- For homework no late submission is accepted.
- Only selected questions will be graded for the homework. Selection of the questions will happen after the homework deadline. Policy will be announced with each homework.
- There will be random quizes during the lectures and recitations. Their date will not be announced. So, you need to attend all lectures and recitations not to miss any points from quizes.

Grading Policy:

Midterm 1	25%
Midterm 2	25%
Quizes	10%
Homeworks	5%
Final	35%
Every three-day absence in lectures	
Note: We have 18 days in total	

Important Notes:

- For proctored exams, your webcam and microphone should be on during the exam. In the case of non-compliance with this and other declared exam procedures, your exam will be void. Make sure to check that your webcam and microphone function properly before the exam.
- You may be given an oral exam to check the authenticity of the written exam by going through the questions of the written exam.
- You must attend the synchronous Zoom lectures, recitations, etc. and real-time online exams with your SU email account.