

Faculty of Eng. & Natural Sci.

IE312-202101

Operations Research II

Instructor(s)

Name	Email	Office	Phone	Web	Office Hours
Tonguç Ünlüyurt	tonguc@sabanciu niv.edu	FENS-1056	9504	http://myweb.sab anciuniv.edu/tong uc/	

Course Content

Develop a broad perspective on the relationships between various types of optimization problems; acquire modeling and solution skills for various methodologies: integer programming, network flows, dynamic programming, heuristics; apply these skills to problems from domains such as service, production, transportation, and energy systems.

Objectives

To teach basic ingredients of deterministic optimization including integer programming modeling and solution methods, network models, dynamic programming and heuristics

Recommend or Required Reading

Textbook

Operations Research, Applications and Algorithms Wayne L. Winston

Assessment Methods and Criteria

	Percentage(%)	Number of assessment methods
Final	40	
Midterm	60	2
Exam		0

Course Outline

- --Integer programming modeling.
- --Branch and bound method.
- --Introduction to networks.
- --Shortest path, maximum flow and minimum cost network flow problems
- --Characteristics of dynamic programming
- -- Dynamic programming examples
- --Heuristic algorithms.
- --Local search and metaheuristic algorithms.
- --Overview and classification of optimization problems.

Learning Outcomes

Have a basic understanding of integer programming modeling and branch and bound algorithm as a solution method.

Have an understanding of basic concepts related to networks, network models including shortest path, maximum flow and minimum cost network flow problems

Have an understanding of dynamic programming

Have an understanding of heuristic approaches

Be able to implement developed models and/or solution methods using appropriate software

Course Policies

In the computer-based lectures, we will use Gurobi/Python to implement the models/algorithms.

There will be two midterms and a final. There will a single comprehensive make up exam for those of you who miss an exam.

There will be some bonus quizzes/assignments. (10%)

You must attend the synchronous Zoom lectures, recitations, etc. using your SU email account