MAT 306 Computational Techniques for Materials at the Nano-scale Spring 2021

Intended Audience:

A junior level hands-on course for MAT, BIO, and CS majors, PHYS and CHEM minors, or anyone who would like to roll up her/his sleeves for modeling materials and obtain their characteristic properties "in silico."

Objective:

The goal of this course is to introduce various modeling techniques operative at a broad range of time and length scales relevant to the understanding of the structure-property relationships of "materials" where a material is defined in the broad sense of anything that is utilized for a particular human defined purpose; to introduce a conceptual framework for the understanding of macroscopic observations of materials from a microscopic viewpoint.

Moderator:	Name: Office No.: Phone No.: e-mail: URL:	Ali Rana Atılgan FENS 2093 +90 (216) 483 9525 atilgan@sabanciuniv.edu http://people.sabanciuniv.edu/atilgan	
Associate:	Dr. T. Fürkan Güçlü		furkan.guclu@sabanciuniv.edu
Learning Assistant:	Defne Çirci		defnecirci@sabanciuniv.edu
Course Data:	Hours/Class Office hours:		Mon 08.40-10.30; Tue 08.40-09.30/FENS G055 <i>TBA</i>

Textbook:

Leach, A.R., Molecular Modelling, 2nd Ed. Prentice Hall, 2001. ISBN: 0-582-38210-6

References:

Hinchliffe, A., Molecular Modeling for Beginners, 2nd Edition. Wiley, 2008. ISBN: 978-0-470-51314-9

Weeks Commencing/Topics:

Feb 28 and Mar 7

The problem of time and length scales in molecular modelling; molecular graphics. Useful concepts in molecular modeling: Coordinate systems; potential energy surfaces; degrees of freedom

Mar 14 and 21

Force fields and how to get a simple potential energy surface from a simple molecular dynamics (MD) run Calculating potential of mean force from MD simulations

Mar 28 and April 4

How to extract barrier heights between the different conformations of a molecule Energy minimization; non-derivative, first derivative and second derivative methods.

Apr 11 Review and Exam I

Apr 18

Normal mode analysis

Apr 25 and May 9

(May 2 Spring Break)

Ingredients of an MD simulation

- the Verlet algorithm; choosing the time step
- conservation of energy; controlling the temperature

May 16 and 23

Thermodynamic properties that may be calculated via MD simulations Calculation of kinetic properties from an MD simulation

May 30 Review and Exam II (two parts, in-class and take home)

June 6 Presentations of Take Home Exam II

Software

NAMD and VMD both of which may be reached at http://www.ks.uiuc.edu/

Learning objectives

Interpret the problem of time and length scales in molecular modeling by relating the type of the problem to the available modeling technique; Sketch simple potential energy surfaces for systems of up to four particles and identify the global energy minimum and local energy minima on it; Calculate the energy of conformations of simple molecules of up to six particles, given the parameters of a force field describing the molecule;

Relate the influence of conformations of a molecule on its properties

by calculating the average properties of a given system based-on the Boltzmann distribution;

Perform conformational searching on systems by applying systematic and random search methods; Perform normal mode analysis on systems in one and two-dimensions and relate the output to vibrational spectroscopy experiments; Set-up and run molecular dynamics simulations on complex systems such as polymers and proteins;

Make physics-based descriptions of the main ingredients of a simulation

such as the Verlet algorithm, periodic boundary conditions, selection of time step;

Calculate thermodynamic (*e.g.*, temperature, pressure, heat capacity), and kinetic properties (diffusion constant, various relaxation times) from simulated trajectories.

Class Policies

Course will be hybrid. Zoom link: https://sabanciuniv.zoom.us/j/94354668055

Grading

Assignments: (5 of them), total is for 50% of the final grade Interim exam: (2) each 25% of the final grade