Sabanci University Computer Engineering Department CS 518 Computer Vision 2022-2023 Fall

Section	Instructor	Lectures	Office Hours
	Erchan Aptoula	Monday 13.40-14.30	Tuesday 11.00-12.00
		Tuesday 08.40-10.30	Tuesday 14.00-15.00

Week	Subject							
1	Introduction, filtering							
2	Image pyramids and the frequency domain							
3	Hough transform							
4	Corner detection							
5	Feature detectors and descriptors							
6	2D transformations – warping							
7	Image homographies							
8	Geometric camera models							
9	Two-view geometry and stereo							
10	Image classification							
11	Learning based computer vision							
12	Optical flow and tracking							
13	Applications and case studies: remote sensing, medical image analysis							
14	Student presentations							

The above schedule is tentative and subject to change.

This course provides a comprehensive introduction to computer vision. Major topics include image processing, detection and recognition, geometry-based and learning-based vision and video analysis. Students will learn basic concepts of computer vision as well as hands-on experience to solve real-life vision problems.

Textbooks

- Computer Vision: Algorithms and Applications by Richard Szeliski
- Computer Vision: A Modern Approach (Second Edition) by David Forsyth and Jean Ponce
- Multiple View Geometry in Computer Vision (Second Edition) by Richard Hartley and Andrew Zisserman
- Digital Image Processing, by Rafael Gonzalez and Richard Woods

Prerequisites: Python programming, calculus, linear algebra, elementary probability and statistics.

Evaluation

- Homeworks (3 15% each) will require implementing one or more computer vision algorithms and/or the design and implementation of a computer vision processing pipeline. They may also include theoretical questions to be answered via LaTeX.
- Final exam 35% will take place in class, in the form of theoretical/design questions, and cover all the topics of the semester.
- **Paper presentation (15%)** will require the oral presentation of a recently published scientific article relevant to the course, selected by the students (group work is possible) and approved by the instructor.
- Class participation (5%)

Grading

A+	Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
≥95%	≥90%	≥85%	≥80%	≥75%	≥70%	≥65%	≥60%	≥55%	≥50%	≥45%	≥40%	<40%

A curve might be applied depending on the distribution, however it will not be stricter than the above scheme.

Late policy

• Late days will incur a 10% penalty/day.