Sabanci University Computer Engineering Department CS 518 Computer Vision 2022-2023 Fall

Section	Instructor	Lectures	Office Hours
	Erchan Aptoula	Monday 13.40-14.30	Tuesday 11.00-12.00
		Tuesday 08.40-10.30	Tuesday 14.00-15.00

Week	Subject
1	Introduction, filtering
2	Image pyramids and the frequency domain
3	Hough transform
4	Corner detection
5	Feature detectors and descriptors
6	2D transformations - warping
7	Image homographies
8	Geometric camera models
9	Two-view geometry and stereo
10	Image classification
11	Learning based computer vision
12	Optical flow and tracking
13	Applications and case studies: remote sensing, medical image analysis
14	Student presentations

The above schedule is tentative and subject to change.
This course provides a comprehensive introduction to computer vision. Major topics include image processing, detection and recognition, geometry-based and learning-based vision and video analysis. Students will learn basic concepts of computer vision as well as hands-on experience to solve real-life vision problems.

Textbooks

- Computer Vision: Algorithms and Applications by Richard Szeliski
- Computer Vision: A Modern Approach (Second Edition) by David Forsyth and Jean Ponce
- Multiple View Geometry in Computer Vision (Second Edition) by Richard Hartley and Andrew Zisserman
- Digital Image Processing, by Rafael Gonzalez and Richard Woods

Prerequisites: Python programming, calculus, linear algebra, elementary probability and statistics.

Evaluation

- Homeworks (3-15\% each) will require implementing one or more computer vision algorithms and/or the design and implementation of a computer vision processing pipeline. They may also include theoretical questions to be answered via LaTeX.
- Final exam 35% will take place in class, in the form of theoretical/design questions, and cover all the topics of the semester.
- Paper presentation (15\%) will require the oral presentation of a recently published scientific article relevant to the course, selected by the students (group work is possible) and approved by the instructor.
- Class participation (5\%)

Grading

A+	A	A-	B+	B	B-	C+	C	C-	D+	D	D-	F
$\geq 95 \%$	$\geq 90 \%$	$\geq 85 \%$	$\geq 80 \%$	$\geq 75 \%$	$\geq 70 \%$	$\geq 65 \%$	$\geq 60 \%$	$\geq 55 \%$	$\geq 50 \%$	$\geq 45 \%$	$\geq 40 \%$	$<40 \%$

A curve might be applied depending on the distribution, however it will not be stricter than the above scheme.

Late policy

- Late days will incur a 10% penalty/day.

