MAT 501 Thermodynamics Fall 2022

Moderator:	Name: Office No.: Phone No.: e-mail: URL:	Ali Rana Atilgan MDBF 2093 +90 (216) 483 9525 atilgan@sabanciuniv.edu http://people.sabanciuniv.edu/atilgan
Associates: Course Data:	TBA <u>Hours:</u> Office hours:	Mon 14.40-15.30/Tue 14.40-16.30 <i>TBA</i>

Textbooks:

Callen, H.B., Thermodynamics and an Introduction to Thermostatistics, Wiley, 2nd Ed., 1985. <u>QC311 .C35 1985</u>. Fermi, E., Thermodynamics, Dover, 1956. <u>QC311 .F47 2010</u>,

References:

Dill, K.A., Bromberg, S., and Stigter, D., Molecular Driving Forces, Statistical Thermodynamics in Biology. Garland Science, 2nd Ed., 2011. <u>QC311.5 .D55 2011</u>. Reif, F., Fundamentals of statistical and thermal physics. McGraw-Hill, 1965. <u>QC175 .R44 1965</u>.

Weeks Commencing/Topics:

Oct 3, 10 Part I

Thermodynamic systems

Piston-gas as a system

Idealizations and assumptions about the piston, the gas, and the environment

Gases

Ideal/perfect – what are the assumptions? Laws – observations/experiments Maxwell's "kinetic" theory

Work done

Oct 17, 24 Part II

Internal energy

Isolated systems

Heat

Interactions with the environment – Isothermal, adiabatic, and all else

The first law

Gases

Expansions – what variables are fixed? Reversibility for each step or whole process? The maximum work theorem

Oct 31, Nov 7 Part III

The second law

Cycles

Carnot – why Carnot? Are there other cycles? A general form of cycles Inverted heat engines: Refrigerators and pumps

Entropy

The fundamental equation - and its consequences

Nov 14-15 Recapitulation and Exam I

Nov 21, 28 Part IV Thermodynamic potentials Helmholtz and Gibbs free energy Legendre transformations The Maxwell relations Thermodynamic description of mixtures

Dec 5, 12 Part V Stability of Thermodynamic Systems Explain, why Addition of heat to a stable system must increase its temperature Isothermal expansion of a stable system must decrease its pressure Le Châtelier's principle and Braun's amendment Phase diagrams Stabilities of phases Phase boundaries and typical phase diagrams

Dec 19 Part VI

Phase transitions

First-order phase transitions in single component systems The discontinuity (of the volume – the lever rule; in the entropy – latent heat) Phase loci – The Clapeyron equation First order transitions in multicomponent simple systems – Gibbs' phase rule

Dec 26-27 Recapitulation and Exam II

Jan 2

Phase diagrams for binary systems Entropy revisited The Nernst postulate and the Third Law Recapitulation and the **Final** prep

Class Policies

Course will be in physical mode (finally)!

Grading

Exam I and II: 30% each, total is for 60% of the final grade Final exam: 40% of the final grade; covers all the material