SABANCI UNIVERSITY

Faculty of Eng. & Natural Sci. BIO-335

Analytical Techniques

Instructor(s)

Zaeema Khan zaeema.khan@sabanciuniv.edu FENS-2061

Course Content

A general introduction to basic techniques used in characterization and separation of biological systems and molecules. Topics include microscopy, centrifugation, liquid chromatography methods, spectroscopy and electrophoresis. Lab sessions will give a chance to use these techniques individually.

Objectives

To teach students the basic concepts of bioanalytical techniques in both, theory and practice, which are relevant to biologists and bioengineers but also students from different fields.

Recommended or required reading

Textbooks:

Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology 8th Edition by Andreas Hofmann (Editor), Samuel Clokie (Editor), Publisher: Cambridge University Press; 8th edition (June 13, 2018), ISBN-10: 1107162270

Bioanalytics: Analytical Methods and Concepts in Biochemistry and Molecular Biology Friedrich Lottspeich (Editor), Joachim W. Engels (Editor)

ISBN: 978-3-527-33919-8

Readings:

Course slides updated annually.

Course Outline

Module 1: Microscopy

Module 2: Electrophoresis Techniques Module 3: Centrifugation Techniques Module 4: Spectroscopic Techniques

Module 5: PCR Techniques

Module 6: Chromatography and Mass spectrometry

Learning Outcomes

Students would be able to perform basic laboratory techniques.

Module 1 Microscopy: Students will have a deeper understanding of both, theory and application in the following topics:

Basic Concepts in Microscopy
Light microscopy
Fluorescence microscopy
Confocal Microscopy
Live-cell imaging and Sensor techniques

Module 2 Electrophoresis Techniques: Students will learn how to use Gel electrophoresis techniques for analysis of nucleic acids and proteins for both, diagnostic purposes and preparative purposes, which includes:

Basic Concepts in Electrophoresis
Horizontal and Vertical Electrophoresis
2D Gel Electrophoresis and Protein Detection Methods
Electrophoresis of Nucleic Acids

Module 3 Centrifugation Techniques:

Basic Concepts of Centrifugation Techniques
Types of Centrifuges and analytical ultracentrifugation techniques
Separation methods and preparative ultracentrifuges
Types of rotors

Module 4 Spectroscopic Techniques:

Introduction and basic concepts of Spectroscopic Techniques UV-VIS Spectroscopy
Infrared and fluorescence spectroscopy
Circular dichroism (CD) spectroscopy
NMR Spectroscopy and X-ray crystallography
Atomic Spectroscopy and Mass spectroscopy

Module 5 PCR Techniques:

Principles of Polymerase Chain reaction
Preparative and Diagnostic PCR
DNA Sequencing methods
Sanger Sequencing, Next Generation Sequencing Methods

Module 6 Chromatography and Mass spectrometry:

Basic Principles of Chromatography
Thin layer chromatography
Liquid Chromatography
Gas Chromatography
Principles of MALDI-TOF
Electrospray Ionization Mass Spectrometry

Course Policies

Class attendance is required. No more than 6 absents in the lecture class. Lab sessions are obligatory. No more than 3 absents in lab class.

Each week in the lab sessions one quiz to the related topic. Protocols for the experiments should include a brief introduction, detailed methodology, presentation of the results and a short discussion.

	<u>Percent</u>	
Lab	30%	
Final	40 %	
Midterm	15 %	1
Group Project	15 %	

Lab

Practical Sessions will be in person from April 10th following the course plan given below

BIO 335L - Analytical Techniques - Lab

Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13	Lab Safety & Buffer Preparation Light microscopy Fluorescence microscopy Agarose Gel Electrophoresis Protein Isolation and SDS-PAGE Affinity & Size exclusion Chromatography Bradford Assay, OD, and Nanodrop
Week 14	Nanopore Sequencing