MAT 68005: Advanced Electrochemistry

. Sabancı . Üniversitesi

Instructor	Mohammed Ahmed Zabara	
Term	2022-2023 Spring	
Classrooms / Hours	Wednesday 8:40am-9:30am FENS L063 Thursday 11:40am-1:30pm FASS G006	
Contact information	mohammed.zabara@sabanciuniv.edu SUNUM 1140	
Office hours	Wednesday 3:30pm - 5:30pm Friday 09:30am – 11:30am	

Course Description	This course provides advance knowledge of electrochemistry required to understand, develop, and monitor various electrochemical systems with the focus on the application of electrochemistry in energy storage and conversion.	
Objectives	 Acquire the fundamental concepts of electrochemistry Distinguish Faradaic and non-Faradaic processes Obtain Knowledge about electrochemical cell and electrode processes Understand types of potential and their governing equations Understand kinetics of electrochemical charge transfer Form basic understanding of the electrochemical interface Distinguish the contribution of mass transfer processes Gain knowledge of impedance based electrochemical characterization and modeling methods Understand the working principles and outcomes of step and sweep electrochemical characterization techniques Recognize the role of electrochemistry in current and future energy storage and conversion applications 	
Reference Books	 Bard and Faulkner, Electrochemical Methods: Fundamentals & Applications, 2nd edition, (Wiley, 2001) Wesley R. Browne, Electrochemistry, (Oxford, 2018) Sawyer, Sobkowiak and Roberts, Electrochemistry for chemists, (Wiley, 1995) 	
Grading	Homework 20% Online activity 10% Midterm 20% Project 20% Final 30%	

Date	Торіс	Learning outcomes
Week 1	Introduction to advanced electrochemistry	 Understand the development of modern electrochemistry Obtain knowledge about the fundamental concepts of electrochemistry Understand the terminology used in electrochemistry Realize the importance of electrochemistry concepts as the working principle for energy applications
Week 2	Electrochemical reactions and their applications in energy production and storage	 Understand and differentiates the cathode/anode reactions Understand the nature of two and three electrode systems Comprehend the functions and the working principles of the different types of electrodes and electrolytes
Week 3	Electrochemical reactions and their applications in energy production and storage	 Differentiate Faradaic from non-Faradaic processes Understand electrochemical potential and current flow Acquire knowledge of reactions in energy storage and conversion systems such as primary/secondary batteries supercapacitors and Fuel cells
Week 4	Thermodynamics of electrochemical reactions	 Understand reversibility of electrochemical reactions Comprehend the derivation of Nernst equation and its application in electrochemical processes Recognize types of potentials in electrochemical systems Obtain knowledge about conductance in electrochemistry
Week 5	Butler-Volmer and Tafel treatment of electrode kinetics	 Realize the relation between potential and current in electrochemical system Understand the treatment of electrochemical processes by Butler-Volmer kinetics Comprehend the Tafel equation and its application
Week 6	Electrochemical Interface	 Understand the structure of the electrified interface Familiarize with proposed models for the electrochemical interface
Week 7	Electrochemical Interface	 Understand modes of mass transport in electrochemistry Comprehend the effect of mass transfer on the interface Recognize the effect of mass transfer on the electrochemical reaction rates
Week 8	Midterm	
Week 9	Impedance theory	 Understand the concept of electrochemical impedance Acquire knowledge about the theory behind Electrochemical Impedance Spectroscopy
Week 10	Impedance based techniques	 Obtain knowledge on the application and outcomes of EIS technique Understand the role of EIS technique for energy storage and conversion applications
Week 11	Modeling based on impedance	 Obtain knowledge about used equations and parameters in simulating electrode processes Recognize the different modeling methods used for electrochemical systems Differentiate the drawbacks of the proposed models in the literature
Week 12	Step and Sweep Electrochemical techniques	 Acquire knowledge about cells and apparatus used for electrochemical measurements Understand the working principles, applications and outcomes of step and sweep techniques
Week 13	Project presentations	 Provide examples from literature and/or industry about the applications of electrochemistry and/or electrochemical techniques
Week 14	Project presentations	Provide examples from literature and/or industry about the applications of electrochemistry and/or electrochemical techniques