Intended Audience: Seniors/graduate students who are enthusiastic about understanding the physics of polymers. Only a basic working knowledge of calculus, probability, chemistry and physics is assumed.
Aim: To develop the fundamental concepts required to understand polymers melts, solutions and gels in terms of both structure and dynamics.
Instructor: Ozge Akbulut - office: FENS 2046; phone: 9968; e-mail: ozgeakbulut@sabanciuniv.edu

Assistant:

Hours: Lecture -,-
Textbook: Rubinstein \& Colby, Polymer Physics (2003). ISBN: 0-19-852059-X
Evaluation:
Grading is based two term exams (25 \% each), final (35 \%), and assignments (15 \%).

COURSE OUTLINE:

Week 1: What is a polymer? Soft matter vs hard matter. A statistical view on chain molecules.
Week 2: Basic definitions: Structure, phases, and weight of polymers. Molar mass distributions and measurements (viscosity measurements and osmometry)
Week 3-4: Ideal chains: Definition of chain conformation; chain dimensions and their distributions. Free energy of an ideal chain.
Week 5: Real chains: Excluded volume and self-avoiding walks. Deformation of chains. Temperature effects.
Week 6: Midterm I, Introduction to polymer thermodynamics
Week 7: Thermodynamics of mixing: Energy - entropy of mixing. Phase diagrams. Dilute solutions.
Week 8: Polymer solutions: Type of solvents. Osmotic pressure.
Week 9: Definition of polymer networks. Random branching and gelation: Percolation. Branching with and without gelation. Mean-field and scaling models of gelation.
Week 10: Networks and gels: Rubber elasticity. Swelling.
Week 11: Viscoelasticity.
Week 12: Midterm II, Introduction to dynamics. Definition of relaxation phenomena.
Week 13: Dynamics of unentangled polymers: Rouse and Zimm models.
Week 14: Dynamics of entangled polymers. Reptation in melts and semi-dilute solutions.

Course Organization:

- Problem assignments, partial flip-class
- Two midterms and a final exam.

