CS301 – Algorithms
2023-2024 Summer
Syllabus

Lectures: Monday 09:40-11:30 @ FENS G077
Tuesday 13:40-15:30 @ FENS G077
Thursday 13:40-15:30 @ FENS G077

Recitations: Tuesday 15:40-17:30 @ FENS G077

Instructor
Name: Süha Orhun Mutluergil
Office Hours: Monday 13:00-15:00 @ Online

TAs
Name: Alperen Doğan
Office Hours: Thursday 15:40-17:30 @ Online

Name: Baran Deniz Karahan
Office Hours: Wednesday 15:00-17:00 @ Online

Name: Emine Ayşe Sunar

Textbook
Introduction to Algorithms
Thomas H. Cormen,
Charles E. Leiserson,
Ronald L. Rivest
Clifford Stein
Grading
- Midterm (30%) Date: TBA
- Final (40%) Date: TBA <<<<<<<< MUST SCORE AT LEAST 30
- Homeworks (15%) 4-5 homeworks
- Project (15%) group project
- Make-up Date: TBA
- Policy: If you miss the midterm or final exam (but not both), and if you have a valid excuse (e.g. a medical condition, an official university event participation, etc.), then you can take the make-up exam. The make-up exam grade is used as the grade of the exam you missed. **Hence it has to be at least 30, if it is substituting the final exam.** The make-up exam may be an oral exam, or may have an oral part (to be decided at the end of the semester).

Tentative Outline

Week 01: Introduction, Algorithm Design Techniques, Growth of Functions

Week 02: Background, Recurrences, Substitution Method, Iteration Method, Master Method, Lower Bounds, Sorting in Linear Time

Week 03: Stability of Sorting Algorithms, Radix Sort, Medians and Order Statistics, Dynamic Sets on Binary Search Trees

Week 04: Dynamic Sets, on Binary Search Trees, Red-Black Trees

Week 05: Augmenting Data Structures, Dynamic Programming

Week 06: Dynamic Programming, Greedy Algorithms

Week 07: Amortized Analysis, Graphs

Week 08: Minimum Spanning Tree, Shortest Path Problems

Week 09: NP-Completeness, Test Design (Functional and Performance Tests)

Week 10: Approximation Algorithms, Flow Networks

Week 11: Maximum Bipartite Matching

Week 12: Sorting Networks

Week 13: Computational Geometry

Week 14: Randomized Algorithm